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The Mixed Sensor Array – MAGS and GRADS
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Types of Source Modeling - “Imaging” (“Imagining”)

Given this discrete grid of source dipoles throughout the brain:

• Dipolar modeling finds which single dipole (grid point) best 
fits the data (multiple dipoles not considered here) 
– SECD, dipole scanning, xfit, etc

• Minimum Norm Imaging simultaneously fits all dipoles while 
minimizing the energy of the image
– MNE-Python, LORETA, LAURA, etc

• Beamforming fits a focal source while minimizing all other 
energy in the “beam”
– LCMV, SAM, beamformer
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Beamformer Signal Processing Reference

• IEEE ASSP Magazine 1988

• Algorithmic details and references

• In particular, MEG “beamformer” is more precisely the LCMV
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What is a “beamformer”?

• Microwave antenna example

• The size of the dish is the “spatial 
aperture” or “spatial extent” of the 
receiver

– Bigger is better

• The primary reception is along the 
direction of the main “beam”

• Note the presence of smaller “sidelobes” 
of the receiver 

van Veen and Buckley 88
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Sidelobes



John C Mosher, PhD

Beamformer from Arrays of Sensors

• Sonar towed array example

• Each of the hydrophones is isotropic 
and identical to the others

• The output of each hydrophone is 
weighted and delayed relative to the 
others, then all are summed together 
into a single output

• The result is high sensitivity to a 
“direction of arrival” (e.g. 20 degrees 
here) to the array, and diminished 
sensitivity to the other directions

• Again, note “sidelobes”

van Veen and Buckley 88

Main beamSidelobes
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Aston Beamformer Workshop

• January 2019 - Aston Brain Centre, Birmingham, England

• Developers from SPM12 (Litvak), Fieldtrip (Oostenveld), 
MNE-Python (Gramfort), Nutmeg (Witte), and Brainstorm
(Mosher) were locked in a room for four days to hack the 
issues of the beamformer
– Actually, Dr. Caroline Witton was a fantastic host

• Simulated data, experimental phantom data, and human 
data were used as common benchmarks

• Here, we’ll use the phantom data to illustrate the 
beamformer issues
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Phantom Data Example – 20 nA-m averaged 100 times

• Experimentally acquired with real environmental noise

• No “brain noise” removing a confound for now

• Source model well-known, but realistically imprecise

• Known separation between “background” and “data”

102 magnetometers
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The Covariance Matrix

• Let’s look at the pre-stim period, 
the “noise” or “baseline” data.

• We can calculate the variance of 
each channel

• We can also calculate the cross-
covariance between each pairs of 
channels

• If we calculate all possible pairs of 
auto and cross covariances, we 
arrange these in the “Covariance 
Matrix”

• All forms of estimation require 
inversion of this matrix
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The Eigenspectrum

• The eigenvalues from a 
PCA or SVD or eigen-
analysis of the covariance 
matrix.

• The inverse of this matrix 
is easily found by 
inverting these values.

• Crucial for examination of 
the strengths and 
weaknesses of the matrix, 
prior to inversion.

0 20 40 60 80 100 120
10

20

10
21

10
22

10
23

10
24

10
25

10
26

10
27

0 20 40 60 80 100 120
10

-27

10
-26

10
-25

10
-24

10
-23

10
-22

10
-21

10
-20

Eigenvalues

Inverted Eigenvalues

Spanning Six Orders
of Magnitude



John C Mosher, PhD

TSSS Filtering

• The phantom data is now easily seen, hence the attraction of 
this preprocessing.
– Indeed, TSSS is a highly dimensional beamformer, adapting to the 

noise statistics.
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Deficient Eigenspectrum!

• TSSS dramatically alters the eigenspectrum!

• Acquisition, filtering, post-processing can also cause similar 
deficiencies 

• “Regularization” is the art of fixing this deficiency prior to 
inversion
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Combined Mags and Grads with Deficiencies

• No simple determination here of what is deficient and what 
is small
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How to Fix?

• Truncate the bad eigenvalues.

• Replace or Augment the bad eigenvalues

• Treat each array separately, then combine
– Ignore the cross terms between modalities

– Recalculate the cross terms between regularized modalities

• Ignore one of the arrays

• Run each array separately and compare results

Under active discussion by the working group
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The Data Covariance

• Gather as much data as possible representing the signal of 
interest, but avoid “diluting” by adding too much noise or 
non-signal regions.

Noise DATA Noise
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The Data Covariance

• Eigenspectrum now has both strong noise and weaker signal 
components.

• Now eliminating or regularizing small eigenvalues may be the very signal 
parts you were interested in!

• “Pre-whitening” by the noise covariance is a method by which we can 
disambiguate this issue, but requires more input by the user.
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Orientation of the Source

• Recall we have a grid of points throughout the brain.

• For each point, we need to find the best orientation of the 
source (don’t use cortical constraints).

• Differences are: 
– (1) best for power, 

– (2) best for depth, or

– (3) best for significance, 

each leading to possibly different results.
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Neural Activity Index and Variations

• Under active discussion and comparison, but my strong 
suggestion is for optimizing orientation best for significance

• Analogous to minimum norm community, which used to 
argue endlessly about “depth weighting” until Dale (2000 
Neuron) introduced “dSPM” which is essentially z-scoring for 
significance relative to noise (related: sLORETA).

• The Neural Activity Index (NAI) of van Veen (1997) is a close 
variation of z-scoring. SAM algorithm calls this “pseudo-z”.

• So the user must specify both a noise covariance and a data 
covariance, but this is a good thing, in my opinion!
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Phantom 
Beamformer 
Example

• Z-scoring of 
the 
beamformer 
output of the 
MAGS
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dSPM and Dipole 
Comparison

• Using noise covariance 
matrix

• Similar z-scoring

• Very similar results!
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Issues

• To calculate the data covariance, you must select a window 
of time containing the signal of interest

• Too short of a time window gives a bad estimation in need of 
a lot of regularization

• Too long of a time window, then you average out the signal 
you wanted

• You assume that the dipole does not spatially move during 
this time

• You assume that no other sources during this time are 
temporally correlated with the source of interest

• Head model must be accurate (EEG a problem)
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Beamforming in Action Towed array storage
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Sonar Room (from web)

©Bryan William Jones
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Summary

• The beamformer model is structurally identical to single 
dipole modeling – the difference is the use of the data 
covariance, instead of the noise covariance.

• Accurate estimation of the data covariance requires a lot of 
data, not always possible with transient events.

• Regularization of the data covariance generally requires the 
noise covariance, not always easily defined (resting studies).

• In practice, beamforming and dipole modeling become 
intermixed as users select “too much” data and over-
regularize it.

• Orientation optimization and imaging presentations can be 
different among packages.

• Watch for papers from the Aston Beamformer group


