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Grid the Brain Volume with Dipolar Sources
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Types of Source Modeling - “Imaging” (“Imagining”)

Given this discrete grid of source dipoles throughout the brain:

Dipolar modeling finds which single dipole (grid point) best
fits the data (multiple dipoles not considered here)
— SECD, dipole scanning, xfit, etc

Minimum Norm Imaging simultaneously fits all dipoles while
minimizing the energy of the image
— MNE-Python, LORETA, LAURA, etc

Beamforming fits a focal source while minimizing all other
energy in the “beam”
— LCMYV, SAM, beamformer
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Beamformer Signal Processing Reference

* |EEE ASSP Magazine 1988

e Algorithmic details and references

Beamforming: A Versatile
Approach to Spatial Filtering

Barry D. Van Veen and Kevin M. Buckley

* |In particular, MEG “beamformer” is more precisely the LCMV
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What is a “beamformer”?

Sidelobes

van Veen and Buckley 88

Microwave antenna example

The size of the dish is the “spatial
aperture” or “spatial extent” of the
receiver

— Bigger is better

The primary reception is along the
direction of the main “beam”

Note the presence of smaller “sidelobes”
of the receiver
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Beamformer from Arrays of Sensors
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Sonar towed array example

Each of the hydrophones is isotropic
and identical to the others

The output of each hydrophone is
weighted and delayed relative to the
others, then all are summed together
into a single output

The result is high sensitivity to a
“direction of arrival” (e.g. 20 degrees
here) to the array, and diminished
sensitivity to the other directions

Again, note “sidelobes”
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Aston Beamformer Workshop

* January 2019 - Aston Brain Centre, Birmingham, England

* Developers from SPM12 (Litvak), Fieldtrip (Oostenveld),
MNE-Python (Gramfort), Nutmeg (Witte), and Brainstorm
(Mosher) were locked in a room for four days to hack the
issues of the beamformer

— Actually, Dr. Caroline Witton was a fantastic host

* Simulated data, experimental phantom data, and human
data were used as common benchmarks

 Here, we'll use the phantom data to illustrate the
beamformer issues
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Phantom Data Example — 20 nA-m averaged 100 times

 Experimentally acquired with real environmental noise
* No “brain noise” removing a confound for now

* Source model well-known, but realistically imprecise

* Known separation between “background” and “data”
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The Covariance Matrix

Let’s look at the pre-stim period,
the “noise” or “baseline” data.

We can calculate the variance of
each channel

We can also calculate the cross-
covariance between each pairs of
channels

If we calculate all possible pairs of
auto and cross covariances, we
arrange these in the “Covariance
Matrix”

All forms of estimation require
inversion of this matrix

-|!|-
5 UTHealth McGovern 4, ¢ mosher, pho
e Some Medical School



The Eigenspectrum
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* The eigenvalues from a
PCA or SVD or eigen-
analysis of the covariance
matrix.

* The inverse of this matrix
is easily found by
inverting these values.

 Crucial for examination of
the strengths and

weaknesses of the matrix,

prior to inversion.
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TSSS Filtering

 The phantom data is now easily seen, hence the attraction of
this preprocessing.

— Indeed, TSSS is a highly dimensional beamformer, adapting to the
noise statistics.
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Deficient Eigenspectrum!

e TSSS dramatically alters the eigenspectrum!

e Acquisition, filtering, post-processing can also cause similar

deficiencies

* “Regularization” is the art of fixing this deficiency prior to

inversion
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Combined Mags and Grads with Deficiencies

* No simple determination here of what is deficient and what
is small
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How to Fix?

* Truncate the bad eigenvalues.
* Replace or Augment the bad eigenvalues
* Treat each array separately, then combine

— lgnore the cross terms between modalities
— Recalculate the cross terms between regularized modalities

* Ignore one of the arrays
* Run each array separately and compare results

Under active discussion by the working group
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The Data Covariance

* Gather as much data as possible representing the signal of

interest, but avoid “diluting” by adding too much noise or
non-signal regions.
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The Data Covariance
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* Eigenspectrum now has both strong noise and weaker signal
components.

* Now eliminating or regularizing small eigenvalues may be the very signal
parts you were interested in!

*  “Pre-whitening” by the noise covariance is a method by which we can
disambiguate this issue, but requires more input by the user.
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Orientation of the Source

e Recall we have a grid of points throughout the brain.

* For each point, we need to find the best orientation of the
source (don’t use cortical constraints).

 Differences are:

— (1) best for power,
— (2) best for depth, or
— (3) best for significance,

each leading to possibly different results.
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Neural Activity Index and Variations

* Under active discussion and comparison, but my strong
suggestion is for optimizing orientation best for significance

* Analogous to minimum norm community, which used to
argue endlessly about “depth weighting” until Dale (2000
Neuron) introduced “dSPM” which is essentially z-scoring for
significance relative to noise (related: sSLORETA).

 The Neural Activity Index (NAI) of van Veen (1997) is a close
variation of z-scoring. SAM algorithm calls this “pseudo-z”.

* So the user must specify both a noise covariance and a data
covariance, but this is a good thing, in my opinion!
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Phantom
Beamformer
Example

e Z-scoring of
the
beamformer
output of the
MAGS
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Issues

* To calculate the data covariance, you must select a window
of time containing the signal of interest

* Too short of a time window gives a bad estimation in need of
a lot of regularization

* Too long of a time window, then you average out the signal
you wanted

* You assume that the dipole does not spatially move during
this time

* You assume that no other sources during this time are
temporally correlated with the source of interest

 Head model must be accurate (EEG a problem)
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Beamforming in Action | o




Sonar Room (from web)

©Bryan William Jones
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Summary

* The beamformer model is structurally identical to single
dipole modeling — the difference is the use of the data
covariance, instead of the noise covariance.

* Accurate estimation of the data covariance requires a lot of
data, not always possible with transient events.

* Regularization of the data covariance generally requires the
noise covariance, not always easily defined (resting studies).

* In practice, beamforming and dipole modeling become
intermixed as users select “too much” data and over-
regularize it.

e Orientation optimization and imaging presentations can be
different among packages.

* Watch for papers from the Aston Beamformer group
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